
TABLE II.

NUMERICAL RE SULTS WHICH SHOW THAT a(dx/dy)/ax < 0

DOES NOT ALWAYS IMPLY THAT a~ /a x < 0.c 0

Battle U
0 

t f t 
~‘c”~’O Rc aR / ax 0 ~

1 4.0 19.5 20.0 ———— 0.437

2 2.0 t < t
f 20.0 0.69 0.434 (O.Oll2)/y0

3 1.0 t <  t~ 20.O
[ 
0.82 0.420 (O.Ol22)1y

0

Other parameter values (time expressed in the same units for a,

t
f~ and t

c
):

d — l . 5 , f~~ — O.5~ a — 0.O1 , a / b — l . 0 , ~/~~— O.l

~Compu ted using result 4 of Table I.
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u—~ — (du/dt)/{—(l/y)dy/dt), (26)

we see by (4) that

fUL~~
A
f 

> 0 “ X wins. (27 )

By (25) and (27) we see that axf/ax0 and ayf/3x0 
have the same sign when X wins.

Using (25), we find that (15) through (17) become

aL
~
/ax

o 
— l — { 1/ ( l — a f / 4) } ax f lax0, (28)

aR /ax0 — (1— ( (4_RC ) / (4_ t .~f ) I a x f / ax o} I (y o
_y f ), (29)

aD /ax
0 

— l— ((t4—l)/(4—A f)}axf/ax0, 
(30)

where we recall that aX f
/aX Ø 

is given by (11). We observe that (28) through (30)

reduce to (18) and (19) for 4 — 4~ , which is a “fight—to—the—finish.” We will now

show that the three criteria do not all lead to the same initial—commitment decision.

Let us first consider the criterion of only the friendly losses. If

� y
0i4, then clearly x~ = x~~~ and Lx 

— 0. Let us therefore , assume that

~~~ < y0 u~ . Recalling (27), we see from (28) that aLx/axo < 1—aX f
/aX Ø so that

recalling (11) we have

THEOREM 3: Consider a battle with a fixed force—ratio breakpoint to be

won by X. If a(dx/dy)/ax ~ 0 and a (dx/dy)/at ~ 0 for

all t c (O~ t f ]~ then aL~ /ax o c 0.

As seem from Theorem 3, it is advantageous for X to initially COmeit as many forces

as possible even for a quasi—autonomous “linear—law” attrition process for which

aa/ax 0 a~/3t. A numerical exampl. of this phenomenon is shown in Table III. We

observe that for a fixed force—level breakpoint battle, there is no advantage to X

from initially committing additional forces over those required to win for this

attrition structure.

13



TABLE III.

EXAMPLE OF BENEFIT TO X FROM INITIALLY COMMITTING MORE FORCES

IN QUASI-AUTONOMOU S LINEAR— LAW BATTLE WITH FIXED FORCE-RATI O BREAKPOINT .

State Equation for Battle: b(x
0—x) = a(y

0—y)

Battle x •L  R
_ _ _ _ _  0 X c

1 150.0 83.33 1.0

2 200.0 66.67~~ 1.0

3 300.0 33.33 1.0

Othe r parameter values:

b/a — 1.0 , ~4 4.0 , y0 — 100.0

14



When the casualty—exchange ratio R
~ 

is taken as the decision cri terion , the

decision to initially commit forces is essentially independent of the battle—termina-

tion conditions. Before we formally state this result, it is convenient to define

the following condition:

Condition (C): R — R (i4) > (dx/dy)
f A~(4) for all 4~ 

(u0,+”). (31)

We have then

THEOREM 4: Assume that Conditions (C) and (R) hold. If a (dx/dy)/ax < 0

and a (dx/dy)/a t � 0 for all t c  [0~ t f ]~ then aR /a x0 < 0.

Proof: Considering ‘4••~
Rc 

— 

~~~~~~~~~~~~~~~ 
we see that

4 > R ~ X wins. (32)

Now consider N(4) — N (4, t f (4) ,y f (4) ) fo r 4 < u 0 ~~ ‘4 
‘C + , where

N(4) — l_{(4_RC)/(4_~f
))ax

f
/axO. 

(33)

We then have by (29)

aR /a x0 — N(i4)/(y0
_y
f
). (34)

The theorem follows from (34) by showing that N(4) c 0 for u0 
< 

‘4 
‘C +~~~. The

latter result will be proven by showing that (a) N(4’u0) = 0 , and (b) dN/d4 < ~

for

To show that

lim N(u~) — 0 — N(u ! u.. u ), (35)
A A 0

ux4’10

we observe that u r n  Yf 
— and

fux
411
0

u r n  N(4) — 1— liii (4_R
C
}/{4_ (dx/dy)f

}. (36)

u
x
4u
0 UX

4l
~O

Using L’Hospital’s rule, we readily compute u r n  ft — lim ( f (dx/dy)dy)/ (Y 0—Y f)
Yf 0

— (dx/dy)1, whence (35) follows from (36). *aX 0 f

15



We next show that dN/d4 ‘C 0 for u0 ‘C ~4 ‘C +~~~ • First , we compute dN/d4

from (33) to obtain

dNfdi4 = {l/(4— ~ f ) }(— 1+dR C/d4+(4_RC )(l_ ciA f /d4)/ (4_ ~f ) }(ax f / ax O )

— [(4_R c )/ (4_L
~f ) 1d(ax f /ax O) /dt4 . (37)

Considering the definit ion of R , (3 ) ,  and (26),  one may show that 14

dR
~/d4 — _Y

f
(R
C
_A
f

)/ {(y
O
_Y

f
) ( ’4_~f)J. (38)

Recalling that Yf 
— y f (4) ,  we obtain f rom (11) that

d( 3x~ /ax 0)/d4 — {(a~ f
/ax

f
)ax

f
/axQ+ (a~ f

/at
f
)at

f
/axQ

}dy
f/d4, 

(39)

wher e dy
f/d4 

— 
~Yf/(’4~~f

) < 0. By Condition (R) we have dA
f/d4 

— aA f/a’4+
(a~ f / at f )dt f Id4. Obse rving that Y 1 ( aA f / ax f )

~~~ Y 
— (

~~ f /a ’4)~~f , Y f~ 
we may com-

bine (37) and (39, to obtain

dN/d~4 — (l/ (4_L~f ) I (_ l +dR c/d4 *(4_R c)/ (4_
~ f ) 1aX f /aX O

+ • . (4_R c )/ (4_ A f ) 2
~ (40 )

where ~ — { Y
f 

at1
/ax0 (dt/d4)ax f/ax0

}aA
f/at f

. We observe that • 5 0 , since

aX f/aX~ > 0, d4/dt~ > 0, and by assumption at~f / a t f ~ 0 and at f/aX0 ‘C 0 [see

(21) above]. It follows by (27), (32), (38), and (40) that for u
0 ‘C 4 < +~

dN/d4 ~~ 
{_y

O
(R

C
_
~ f
)/t(4_~f)

2 (y
O
_y

f
)]}ax

f
/ax

O 
<

the last inequality being a consequence of Condition (G). Q.E.D.

It may be difficul t tc ’ determine , in general, whether Condition (C) holds .

However, it does hold for quasi—autonomous Lanchester—type equations when Condition (R)

holds and at/au ‘C 0 always. Thus , we have

LEMMA 1: When Condition (R) holds for quasi—autonomous Lanchester—type

equatio ns , then as/au ‘C 0 fo r all t r  [0~ t f ] implies R > t~f

( i .e .  Condition (G) holds) .
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Proof: By the assuznpt~ons, u ‘C 4 implies A ) A whence follows the lemma by

considering R _ .A
f 

— 
j
°(A_A

f)dY /(YQ
_Y

f). Q.E.D.

Yf
Then for quasi—autonomous Lanchester—type equations when Condition (R) holds and

the casualty—exchange ratio is taken as the decision criterion, the decision to ini-

tially commit forces is independent of the bsttle—termina~ion conditions.

COROLLARY 4.1: Assume that Condition (R) holds for quasi—autonomous

Lanchester—type equations. For a battle with either a

fixed force—level breakpoint or a fixed force—ratio

breakpoint , if IA/ ax ‘C 0 for all t c  [0~ t~ J~ then

aR /a x0 ‘C 0.

Proof: By Theorem 1 the result is true for a battle with a fixed force—level break-

point. For a battle with a fixed force—ratio breakpoint, we know that Condition (G)

holds by Lemma 1 so tha t the corollary follows by observing tha t all the assumptions

of Theorem 4 are satisfied . Q .E.D.

Finally, we consider the loss difference D as the decision criterion for

initially committing forces. A general result , however, is only available when the

final differential casualty—exchange ratio is greater than one.

ThEOREM 5: If a(dx/dy)/ax < 0 and a(dx/dy)/at � 0 for all t c  [O~tf]

and (dx/dy)
f � 1, then aD

~
/axo < 0.

Proof: Recalling (11) and (21), we see that the assumptions of the theorem yield

ax lax ,., ‘ 0. Recalling (27) and (30), we then see that ~ ~ 1 implies thatf y0 f

aD /ax0 ~ 1—exp (— J (ao/ax)dy} whence follows the theorem. Q.E.D.

Yf

If A
f ‘C 1, however, it does not follow by the other stated conditions of

Theorem 5 that aD
~
/ax

0 ‘C 0 so that x~ — xr: it is possible for x~ to be an

interior point of the interval ~~~~~~~~~ (i.e. D has an unconstrained global

minimum at x~ such that ‘C ‘C ~~~~~ Before we give an example of this

17



occurrence , however, let us give results analogous to those of Theorem 2, which applies

for a fixed force—level breakpoint.

THEOREM 6: Consider a battle with a fixed force—ratio breakpoint to be

won by X. Assume that Condition (R) holds and that the Lan—

chester-type equations (1) are quasi—autonomous. If dx/dy q(u)

is a strictly convex (concave) function of u on [O ,4~’) and

(aq/au)f ‘C 0 (>0), then Lx is a strictly convex (concave)

function of x0. The same is true for R
~ 

if additionally

< 0 V x0c [x~~~,x~~
’
~1, while it is true for D j f

4 >1 .
Proof: Computing a2xf/ax~ 

= 

~~~ 

(u/y2)(a2q/au2)exp
[~ 

(l/Y 1)(aq/au)dY1]dY

_ (u/y
f )(aq/au)fI(’4_~f )~ 

. exp [-2 (l/y)(aq/au)dy], we see that xf is a strictly

concave (convex) function of x
0 

under the stated conditions. The theorem readily

follows after we compute a2Lx/ax~ 
— l—1l/(1—A f/4

)}a2xf/ax~ , a2a /a x~ =

{2(aR
~
/ax

0
)ax

~
/ax

0
_ (4_R

c
)3 2x

f
/ax~

}/ {(y
O
_y

f
)(4_A f

)}, and a2D /ax
0 

—

1— {(4_l)/(~4_~f
)}a2x

f
/ax~ . Q.E.D.

We now give an example that an unconstrained optimal initial force level (for

fixed y
0
, equivalently, an unconstrained optimal initial force ratio u~

) can occur

when D is the decision criterion. Let us first note that it is possible for

aD /ax
0 

— 0 when 3t~/~ x < 0  and an / a t  0 for all t c  [0 , t f ] and A f ‘C 1. We

now assume that Condition (R) holds for quasi—autonomous Lanchester—type equations (1)

and that q(u) is convex in u on [0,+~) with (aq/au)f < 0 and 4 > 1. Then

by Theorem 6 D is convex in x0 and has a global minimum where aD /ax
0 

— 0. This

occurs, for exanple, for a classic “square—law” battle in which dx/dt — —ay and dy/dt —
—bx so that q(u) a/(bu). Moreover , a direct computation shows that D

~

y0
((u

0—1) 
— (4_l)[(u~_a/b)/((4)

2_a/b)]~
”2}. For fixed y0, D

~ 
has a global minimum

at u~ — f(a/b){(4)2_a/b}/ (24_ (l+a/b)}J
1
~
’2
. Numerical results are shown in Table IV.
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TABLE IV.

NUMERICAL RESULTS WH ICH SHOW UNCONSTRAINED MINIMUM OF Dc
FOR “SQUARE—LAW” BATTLE WITH FIXED FORCE-RATIO BREAKPOINT.

Battle u0 X
0 Xf Y0 Yf 

D R
c

1 1.2 50.08 77.89 —27.81 0.64

2 ii 36.01 66.67 —30.655 0.54

*3 u0 l.44262 34.66 65.34 —30.683 0.53

4 1.5 32.15 62.73 — 30.583 0.51

5 J~i 24.13 52.86 —28.73 0.46

6 2 17.43 42.26 —24.84 0.41

7 12.79 33.33 —20.54 0.38

Other parameter values:

b/a — 1.0 , ‘4 — vi~, y
0 

— 100.0
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6, RESULTS WHEN THE SIGN OF 3 (dxldy)Iax IS ALWAYS THE SAME

Motivated by some Lanchester—typ e attrition processes that have appeared in

the literature for which the sign of a(dx/dy)/ax is the sane for all admissible

values of t, x , and y, we state

Condition (P): the sign of a(dx/dy)/ax is the sane for all t,x ,y ~ 0. (41)

Condition (P) is satisfied, for example, for variable—coefficient Helmbold—type processes~
81

(for which ~ — {a(t)/b(t)}(x/y)1
~~ ) or constant—coefficient aimed—fire battles with

supporting fires not subject to attrition as studied by Taylor and parry [2 h }  
(for which

— (a+8u)/(cz+bu)). The above results aay then be somewhat more strongly stated .

THEOREM 7: Assume that Condition (P) holds and that the Lanchest er-type

equations (1) are quasi—autonomous. For a battle with a fixed

force—level breakpoint to be won by X, ac/ax0 < 0 f or C =

Lx’ R , D if and only if a(dx/dy)/ax ‘C 0.

THEOREM 8: Assume that Conditions (P) and (R) hold and that the Lanchester-

type equations (1) are quasi—autonomous . For a battle with a

fixed force—ratio breakpoint to be won by X, aR /ax0 < 0 if

and only if as/au — aq/au ‘C 0. If dx/dy — q(u) is a strictly

convex (concave) function of u on (O,+°’) and aq/au < 0 (>0),

then Lx 
and R

~ 
are strictly convex (concave) functions of

x
0
. The sane is true for D if additionally 4 > i.

Theorem 7 follows fr-’r (11), (18), ( 19), and Condition (P), since a (dx/dy)/a t 0.

The statement about i.ui Theorem 8 follows from (33), (34), and (35) ,  since

dN/d u~ ‘C ~.) if and only if aA/3u < 0. The latter inequality for dN/d*4 follows from

aX f/ax0 > 0 and

dN/d,4 — {_ y
O (R _A

f
) / [ ( u X

_
~ f ) 2 (y O

_y
f )]} 3x f / ax Ot

wh ich nolds by (40) with aj~/at 0, since R > if and only if at~/au < 0. The

proof of the last inequality i~~11ows along the lines of that for Lemma 1. The proof of

the convexity st a tenents  in Theorem 8 follows along the lines of that for Theorem 6.
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7. THE CONCENTRATION DEcIsIoN IN THE FACE OF AN ENEMY VICTORY

Let us now briefly consider battles to be won by the enemy (i.e. Y). The eibove

analysis must be entirely redone. In considering the initial—commitment decision ,

we will assume that X cannot turn the tide of battle (i.e. 0 ‘C m m  
~ x0 

~~ max 
=

drawx0 
—~~~~, where C > 0).

For a battle won by Y , we assume that dx/dt ‘C 0 for all tC (O~tf] and

parameterize the course of battle in terms of the X force leve]... Hence, we consider

yf — y f
(x f; x0.Y0)~ X f 

= x
f(x0.y0

)~ t — t(x;x0,y0
), and y y(x;x0,y0). Writing

y — y(x;x0,y0) 
= y

0 
— dy/dx(t(x

1
;x0,y0),x1,y(x1;x0,y0))dx1, we obtain analogous to

(10) x

(BY/axo)x y  — By/ax
0 

— —(dy/dx)0 — {(at /ax 0) . a ( d y/ dx ) / a t

+ (B y/9x0) 
. a(dy/dx)/ay}dx

1
. (42)

r O
When the equations (1) are quasi—autonomous, BYf 

/ax0 — —(l/~0
)exp ( J (a(dy/dx)/3 y)dx } ,

which becomes when Condition (R) holds X
f

Byf /Bx 0 - _ (l /q0)exp { j
°(u/ q) 2 (l/x) (aq/ au)d x ) .  (43)

Taking account of the functional dependencies of X
f and y f ,  we see that the partial

derivatives (15) through (17) of the decision criteria now take the form

aLx/axo 
— 1 — BX

f
l3X

0
~~ (44)

— {l+R
~ 

BYf/BxQ — (l_R~/.~f)axf/ax0}/(y0
_y

f). (45)

— l_ (l_ l/A
f)axf/ax0+ayf/ax0. (46)

For a battle with a fixed force—level breakpoint to be von by Y (i.e. X
f 

— 4.
where 4 is a given quantity15) ,  we have that Bxf/Bx0 0 so that the above become

aL
~

/Bx
0 

— 1, (47)
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aR /ax0 — {l + R
c (ayf/3x0) } / ( y

0
yf
), (48)

aDc/axo 
= l+a yf

/axQ, (49)

From the above , we see that the initial—conmiitment decision for X is quite

different (at least for a fixed force—level breakpoint) when Y wins . If X considers

* mm
onl y his own losses L

x~ 
then x

0 
x
0 

. Cons ider ing (43) and (49), one can show

that aD /ax
0 

> 0 when Condition (R) holds for quasi—autonomous Lanchester—type equa-

tions, q0 
— (dx/dy)

0 ~ 
1, and aq/au < 0 for all t (O .tf]~ 

since q
0 ~ 

1 and

aq/a u < 0 for all t ~ [O ,t~ ] imply that ayf
/3x

0 
> —l by (43). Further examination

of the initial-committnent decision in the face of an enemy victory is beyond the scope

of our current investigation . By the above, however , it should be clear that results

differ from those for the case in which X wins.

8. Di scuss ioN
lu this paper we ha~e shown that under the appropriate conditions Taylor and

parry i s
[2 1] 

conjecture that the consequences from initially committing additional forces

to battle may be determined from how ‘-he instantaneous casualty—exchange ratio varies

with changes in the victor ’s force level and time is true. This determination does

not require that the Lanchester—type combat equations be solved . As the example consid-

ered in Section 4 showed , temporal variations in the instantaneous casualty—exchange

ratio for constant force levels (i.e. 3(dx/dy)/at) must be of a certain nature (see, for

example , Theorem 1) for our resu’ts to hold . This important qualification was not

observed by Taylor and parr y [21]
. Not only do these results apply to most cases of

Lanchester—type combat betveen two homogeneous forces but also to such cases with

superimposed effects of supporting weapons not subject to attrition as treated by Taylor

and Parry . Furthermore , our new results may be extended to cases of continuous replace-

ments and/or withdrawals. 16

Let us now app l y our general results to the constant—coefficient model , dx/dt —

[1] [2lJ—ay — Bx , dy/dt — —bx — iv , considered by Bach et al. and Taylor and Parry . By

Theorems 7 and. 8, when the overall casualty—exchange ratio R
c 

is the decision criterion ,
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the victor X should initially commit as many forces to battle as possible (i.e.

— X~~
x
) if and only if ab > nB , regardless of which of the two battle—termination

models is used. For fixed force—level breakpoint battles , the initial—commitment deci-

sion does not depend on which of the three criteria is used . Moreover, as first shown

by Bach et al)11 , there are diminishing marginal returns from initially committing

additional forces to battle when this is the optimal action. Our new results provide

an explanation for these diminishing returns: the instantaneous casualty—exchange ratio

dx/dy • q(u) - (a+Bu)/(a+bu) is a convex function of u on (0,+~) when ab > a8

(see Theorem 8).

If the combat between primary systems follows a Helmbold—type~
8
~ attrition process

(see Section 4 above and Tay1or~~
71) in the above example , then the combat dynamics are

given by dx/dt = —a (X/Y)c ~ — Bx and dy/d t — —b (y/x)C x — ny . In this case we

have dx/dy q(u) = u(au
_d/2

+B)/(c~+bu
d
~
2) and aq/au — {cz8—(d—l)ab +

(1_d/2)( aau~~
/2+8bud/’2 )}/(cz+bud~

/2
)2, where d — 2(1—c). Hence, the victor X should

never initially commit as many forces to battle as po.ssible when d 5 1. The same con-

clusion holds for all d 5 2 when a8 > ab. For 1 ‘C d < 2 and a8 < ab , aq/~ u may

chan ge sign over the course of ba ttle , and then it is not possible to invoke our

theorems. This last example brings to mind an important aspect of our results: our

results (in particular , Theorems 1, 3, 4, and 5) provide suff ic ien t cond itions f or the

optimal course of action to be to initially commit as many forces as possible. Since

we are dealing with sufficient conditions, it may still be optimal to initially commit

as much as possible even when such conditions are not satisfied .

All the above results show that with supporting fires present one should not

always commit as many primary forces as possible in aimed—fire battles, but one must

trade—off vulnerability to supporting fires against the increased fire effectiveness

from massing primary systems. Military interpretations for various quantities such as

ab are to be found in Taylor and par ~ E2fl~ Thus , this work shows that in our nuclear

age with supporting weapons of great effectiveness , merely commiting large numbers of

forces to battle may not always be the “bes t” thing to do.
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Our work here shows the importance of battle—termination conditions for combat

evaluations. We saw that different optimal initial—commitment actions were possible

in fixed force—level breakpoint battles and fixed force—ratio breakpoint battles. In

particular , the loss ratio and the loss difference may yield different initial—commit-

ment decisions for a fixed force—ra tio breakpoint battle , although they yield the same

decision for a fixed forci—leve l breakpoint battle. Similar results on the sensitivity

of optimal time—sequential fire—distribution policies to battle—termination conditions

have been pointed out - by the author~~
4
~
1Sl . Consequently, we feel that more scientitic

work is required on mode lling conflict termination
17 (see Taylor U4l for references).

As is always the case., however , the insights gained into combat dynamics from such

Lanchester—type models are no more valid than the models themselves.

NOTES

1. It was the author ’s good fortune to be awarded (jointly with S. Parry) the 1975

MAS Prize by the Military Applications Section of ORSA for the three papers Taylor and

(211 (17] -
Parry , Taylor , and the paper at hand . The MAS Prize is awarded annually tor

the best paper on mil irarv operations research that is submitted in response to a

solicitation.

2. The instantaneous (or differential) casualty—exchange ratio is given by dx/dy =

F(t,x,y)/G(t ,x ,y) for the model (1) with no replacements and withdrawals. We may

think of it as th~’ ratio of each side ’s casualties that occur in a short interval of

time dt.

3. One of the half dozen or so principles of war (see references 5, 12, and 22) is the

principle of concentration (or mass), which would have a commander concentrate as many

men and means for battle as possible at the decisive point. The exact number of prin-

ciples of war varies from author to author.

4. See references 16, 17 , 19, and 21 for further information about such models.

5. Extension to cases with rep lue’ments and/or withdrawals is outlined in Note 16 below.
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6. As Borch t
~

1 has emphasized , it will not make much sense to study decisions under

uncertainty unless we know how to make decisions under full certainty.

7. As pointed out in reference 21, the entire topic of modelling battle termination is

a problem area in contemporary defense planning studies, and there is far from universal

agreement on this topic. For further references see Tay1or~~
41 .

8. For our idealized deterministic model, t ‘ 0 may be taken to be arbitrarily small.

In the real world with its various uncer~ainties, a larger value would be desirable as

a “hedge” against uncertainty (see reference 21 and p. 322 of reference 1).

9. Quasi—autonomous Lanchester—type equations of modern warfare have, for example , been

considered by Bonder and Farrell121 and Taylor1131 (see also Note 4 of reference 19).

10. Piecewise—constant attrition—rate coefficients may be reagrded as a l imit ing case

of twice continuously different iable  coefficients. The former are certainly much more

convenient to use for this counterexample.

11. The first equation of Table I may be obtained in the following manner. First , we

observe that the substitution p — ~
lc and q — yl~C transforms the nonlinear equa-

tions (22) into the following linear system

dp/d t — —(l—c)a(t)q, dq/dt = -‘-(l—c)b(t)p.

[This important transformation was apparently first noted in Taylor~~
8] f or a more gen era l

model.] Next , we consider the case in which the above model has constant attrition-rate

coefficients. When X wins, the time for Y to reach his breakpoint , t~ , then

follows from well—known constant—coefficient results (see, for example , equation (8) of
[20]

Taylor and Comatock ).

12. See, for instance, Farrell and Freedman171 for an example of the use of such battle—

termination conditions in contemporary defense analysis.

13. Equation (25) is developed in the following manner. From (3) and the definition

of 4, we have
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x f (y f (x 0,y 0) ;x 0,y Q ) = 4. y~(x0,y0
).

Since 4 is a g iven constant , diff erentiation with respect to x
0 

yields

(ax
f
/aY f

)
X Y

. (a Yf
/ax

0
)
y 

+(ax
f
/ax

0
)~ y 

= 4~ 
(ay1

/3x0) ,

which yields the desired result via (13).

14. Since x0 and y
0 

are fixed in this development , we have that X
f 

is a function

of only yf so that

R (x0—xf(yf))/(yQ—yf).

For a fixed force—rat io  breakpoint batt le., we may consider that Y1 is a function of

4. Differentiation of the above expression for R with respect to 4 yields the
desired result (38) by use of the identity dy

f/d14 
= —Yf/(4—~f

)~ which follows from

(26).

15. Thus , one assumes that the X force is effective only for x > 4. In other words,
one is assuming that by the time the X force level reaches 4, the uni t has suf f e red

so many casualties (and also lost key personnel) that it ceases to be an e f f ec t i ve

fighting force. One normally writes that 4 — f~~ x0, where ~~~ deno tes a

given fraction of X ’s initial strength (for further details , see Section 2 of Taylor

and Coms tock~
201). The breakpoint fraction ~~~ is usual ly assumed to depend on the

tactical posture of the unit , unit size, its morale and training , etc. A typical value

(frequently used in defense analyses) for ~~~ is 0.7 for a company—sized unit in

the attack.

16. The extensic~ of the se results to cases of continuous replacements and/or with-

drawals becomes quite complex , however. We will now brief l y examine such an extension.

Let n.
~
(t) denote the net rate of influx of replacements for X, and similarly for

(t). Then, denoting X ’s casualties as x~ , we have

x x — x  +Nc 0 f X

2 t



t f
where — J n~ (s)da , and similarly for ‘

~~~~ 

It follows that

ax
c
/ax

o 
— 1— axf laxO +nX (tf

)((dt/dy)f 
ayf/ax0+at f/axØ},

and

ay
~/ax0 — ayf

/ax0+n~(tf){(dt/dy)f 
ay

f
/ax

0
+at

f
/ax

0
},

where (dt/dy)
f 

denotes the final value for 1/(dy/dt). Recalling that L.L 
a

R — x~/y~, and D — x~— y~, we have for a fixed force—level breakpoint battle (in

which Y f — constant)

aL
~
/ax0 — 1— axf/axO

+S
X
(t
f
) • at f/aX0.

aD /ax0 — 1— ax1
/ax

0 + {n~ (tf
)_n~ (tf

) }at
f
/aX 0.

and

aR /ax0 
— (l_ax

f
/ax

O
+(fl

~
(t
f
)_R

C
n
!(tf)1at f

/axO}/(yf
_y

O
).

The abov. partial derivatives should be compared with the analogous ones (15) through

(17) for the case of no replacements and withdrawals. Further examination of such an

extension is beyond the scope of our current investigation.

17. Here we mean that more effort should be spent on developing scientifically valid

models of conflict termination because of the sensitivity of analysis results to such

models.
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